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Abstract

This paper proposes a solution to the problem of
browser-based fingerprinting. An important obser-
vation is that making fingerprints non-deterministic
also makes them hard to link across subsequent web
site visits. Our key insight is that when it comes to
web tracking, the real problem with fingerprinting is
not uniqueness of a fingerprint, it is linkability, i.e.
the ability to connect the same fingerprint across
multiple visits. In PriVaricator we use the power of
randomization to “break” linkability by exploring a
space of parameterized randomization policies. We
evaluate our techniques in terms of being able to pre-
vent fingerprinting and also in terms of not breaking
existing (benign) sites. The best of our randomiza-
tion policies renders all the fingerprinters we tested
ineffective, while causing minimal damage on a set
of 1,000 Alexa sites on which we tested, with no no-
ticeable performance overhead.

1 Introduction

Browser-based fingerprinting, proposed as a theo-
retical threat to online privacy several years ago,
has by now emerged as a full-fledged alterna-
tive to traditional cookie-based tracking. Recent
work has demonstrated the growing proliferation of
JavaScript-based fingerprinting on the web [1, 16].
Today, companies such as BlueCava [3], Threat-
Metrix [19] and iovation [11] routinely fingerprint
millions of web users. However, despite several at-
tempts, mostly involving privacy-enhancing browser
extensions, there has been a dearth of comprehen-
sive privacy-enhancing technologies addressing in-
browser fingerprinting. In this paper, we propose
a comprehensive approach to prevent reliable finger-
printing in the browser, called PriVaricator.

Key insight: Much has been made of the fact that
it is possible to derive a unique fingerprint of a user,
primarily via JavaScript as shown by the Panop-
ticlick project [8]. However, the insight behind our
techniques is the realization that the culprit behind
fingerprinting is not the fact that a user’s finger-
print is unique, but that it is linkable, i.e. it can
be reliably associated with the same user over multi-
ple visits. While popular prevention techniques have
attempted to make the fingerprints of large groups
of users look the same [20], the key insight our pa-
per explores involves doing the opposite. PriVaricator

modifies the browser to make every visit appear dif-
ferent to a fingerprinting site, resulting in a different
fingerprint that cannot be easily linked to a finger-
print from another visit, thus frustrating tracking
attempts.

Randomization policies: In this paper we ex-
plore a space of randomization policies designed to
produce unique fingerprints. The basis of our ap-
proach is to change the way the browser represents
certain key properties, such as offsetHeight (used
to measure the presence of fonts) and plugins, to the
JavaScript environment. We observe that creatively
misrepresenting — or lying — about these values in-
troduces an element of non-determinism, which gen-
erally makes fingerprints unlinkable over visits.

Note that the randomization is not as easy as it
might sound: as discussed in [16], producing practi-
cally impossible combinations of, say, browser head-
ers and the navigator object, can actually reduce
user privacy. Intuitively, blatant lying is not such a
good idea; however, misrepresenting key properties
of the browser environment in a subtle way goes a
long way toward combating fingerprinters. In sum-
mary, a randomization policy should 1) produce un-
linkable fingerprints and 2) not break existing sites.
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Implementation: We have implemented
PriVaricator on top of the Chromium web browser.
We proceed to systematically evaluate the space of
randomization policies in an effort to 1) maximize
the effectiveness, as measured by fingerprinting sites
rendered ineffective and 2) minimize the number of
broken benign sites, as measured by the Alexa list
of popular sites.

Deployment: We position PriVaricator as an en-
hancement to the private browsing mode already
present in the majority of browsers. Existing private
modes help prevent stateful tracking via cookies;
PriVaricator focuses on preventing stateless tracking.
We believe that it is better to integrate PriVaricator

into the browser itself as opposed to providing it via
an extension. One of the reasons for this, is the fact
that most privacy extensions so far have only en-
joyed a small deployment base, which in fact often
makes it easier for the fingerprinter to identify the
user [16].

Evaluation: We discovered that a number of our
policies are able to render the fingerprinters we
tested ineffective, while creating minimal damage
to benign sites. In particular, the best of our poli-
cies renders all the fingerprinters we tested on in-
effective, while only altering the visual appearance
of, on average, 0.7% of the content offered by the
top 1,000 Alexa sites. Using three JavaScript bench-
mark suites, we show that the modifications needed
to implement PriVaricator on top of the Chromium
browser cause a negligible performance overhead.

2 Background

A device fingerprint is a set of system attributes
that are usually combined in the form of a string.
This combination of attributes is generally designed
to be unique with a high likelihood and, as such,
can function as a device identifier. Attributes that
range over a broader set of values (e.g., the list of
fonts and plugins) are more identifying than values
shared by many devices (e.g., version of the oper-
ating system). Stability is a desirable property in a
fingerprinting strategy; choosing attributes with val-
ues that are more stable over time (i.e., that change
only infrequently or very gradually) facilitate reli-
able identification, compared to those that change
frequently and unpredictably.

Web-based device fingerprinting is the process
of collecting sufficient information through the
browser to perform stateless device identification.
The collected information is generally obtained via

JavaScript and includes the device’s screen size, the
versions of installed browser plugins, and the list of
installed fonts. Collected fingerprints may be used
as user identifiers for web tracking, i.e. linking of
visits to (one or multiple) web pages as made by the
same user or device. An example of a simple fin-
gerprinting strategy is provided by the fingerprintjs
library [21]:

var hasher = function(value , seed){ return value.
length % seed; }

var fingerprint = new Fingerprint(hasher).get();

The last line computes the fingerprint for the user,
which in this case is a long integer. Depending on the
specific choices of each fingerprinter, a user’s device
fingerprint can be an integer, a hash of the user’s fin-
gerprintable attributes, or a server-side/client-side
generated GUID.

2.1 Why Fingerprint?

When it comes to the motivation behind web-based
device fingerprinting, two reasons have emerged as
most common.

Third-party tracking: Probably the most com-
mon use of fingerprinting involves tracking the user
across multiple, possibly unrelated, web sites to con-
struct an interest profile for the user; this profile
can then be employed to deliver targeted ads. As
has been argued before, fingerprinting is an effec-
tive and stealthy alternative to stateful cookie-based
user tracking. In a sense, the better fingerprinting
works, the more information is learned about the
user with a higher degree of reliability, leading to
better ad targeting and thus to higher conversion
rates for the advertisers. This creates a direct in-
centive for ad delivery networks to invest in bet-
ter fingerprinting strategies, especially given that
fingerprinters might not necessarily obey browser-
provided Do-Not-Track (DNT) headers [1].

Fraud prevention: Third-party tracking, an ac-
tivity that has provoked much outrage on the part
of both privacy advocates and some users, is not
the only raison d’être behind fingerprinting. It is
sometimes argued that fingerprints can be used for
fraud prevention. We refer the interested reader to
some of the literature from the fingerprinting com-
panies themselves [11, 18, 19] for further details. We
should note that it is not obvious that collected
fingerprints cannot be also sold to third parties or
abused for tracking purposes by the companies that
collect them.

In connection to fraud prevention, advocates of
fingerprinting claim that a device fingerprint is a

MSR-TR-2014-26 2 February 28, 2014



2 BACKGROUND 2.2 BlueCava Explained

powerful tool for finding related transactions either
as an identifier in itself or as a means of finding
transactions with related characteristics. Finger-
prints also can be used to find out when account
information is being shared illegally. The gathered
fingerprints can be augmented with device reputa-
tion information and be used to blacklist fraudulent
users and their activities.

Opt-out: While some of the aforementioned finger-
printing companies offer opt-out pages for the user,
it is highly non-obvious what a successful opt-out
really means. Ironically, to know that a user has
opted-out of tracking, the fingerprinters still first
need to compute the fingerprint (assuming cookies
are disabled) and then, if they are honest, proceed
to disregard information from that session.

Compared to stopping stateful tracking that can
be achieved at the client-side, via disabling or clear-
ing cookies, and the help of many extensions, this
server-side approach to opting out is not satisfying
because, ultimately, the user needs to trust the fin-
gerprinting server. With PriVaricator, reliable finger-
printing is rendered impossible in the first place.

2.2 BlueCava Explained

Figure 1 shows a partial code snippet from Blue-
Cava’s fingerprinting code, which we simplified to
improve readability. Function getPlugins (lines 2–
14) is responsible for gathering the list of plugins
and their descriptions, as those are reported by a
user’s browser. The getFontMeasurement function
(lines 16–32) is a helper function that is called by the
getFonts function (lines 34–50). These functions to-
gether, allow fingerprinters to extract a list of fonts
installed on a user’s machine without the browser
explicitly providing such information to scripts.

As explained by Nikiforakis et al. [16], code of this
nature takes advantage of the fact that different font
families have stylistic differences which affect the
width and height of a block of text rendered with
them. By testing these text dimensions against the
fallback font of browsers (ground truth obtained in
line 39), the script can go through a long list of fonts
(line 36) and mark the ones that deviate from that
ground truth, as present (if a font family is not in-
stalled, the browser will use the fallback font and
thus the condition of the if statement on lines 44–
45 will not be satisfied).

Finally, this script combines this information to-
gether with other fingerprintable attributes of a
user’s browser into a fingerprint string (line 59). De-
pending on each specific case, the fingerprint will

1 /* Extracting plugin information */
2 function getPlugins (){
3 plugs = []
4 for (var d = 0; d < navigator.plugins.

length; d++) {
5 var e = navigator.plugins[d];
6 [...]
7 plugs.push({
8 Name: e.name ,
9 Description: e.description ,

10 FileName: e.filename
11 });
12 }
13 return plugs;
14 }
15
16 /* JS-based detection of fonts */
17 function getFontMeasurement(font_family){
18 var h = document.getElementsByTagName("BODY

")[0];
19 var d = document.createElement("DIV");
20 var s = document.createElement("SPAN");
21 d.appendChild(s);
22 d.style.fontFamily = font_family;
23 s.style.fontFamily = font_family;
24 s.style.fontSize = "72px";
25 s.innerHTML = "mmmmmmmmmmlil";
26 h.appendChild(this.d);
27 textWidth = s.offsetWidth;
28 textHeight = s.offsetHeight;
29 h.removeChild(d);
30
31 return [textWidth , textHeight ];
32 }
33
34 function getFonts (){
35 /* Long list of fonts */
36 var fonts = ["cursive","monospace","serif",

"sans -serif","fantasy","Arial","Arial
Black","Arial Narrow" ,...]

37
38 /* Measuring ground truth */
39 var ground_truth = getFontMeasurement("sans

");
40 var discovered_fonts = []
41
42 for(var i=0; i < fonts.length; i++){
43 c_measurement = getFontMeasurement(

fonts[i]);
44 if (c_measurement [0] != ground_truth [0]

||
45 c_measurement [1] != ground_truth

[1]){
46 discovered_fonts.push(fonts[i]);
47 }
48 }
49 return discovered_fonts;
50 }
51 /* Get more fingerprintable information from a

user’s:
52 - timezone
53 - screen dimensions
54 - math constants
55 - ...
56 */
57 [...]
58
59 var fingerprint = combineIntoFingerprint(

getPlugins (),getFonts () ,...);
60 sendFingerprint(fingerprint);
61 [...]

Figure 1: Partial fingerprinting code from BlueCava.
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Fingerprinting Script Plugin Screen Uses Access to
provider name enumeration properties canvas offsetWidth offsetHeight

Bluecava BCAC5.js X X 7 63 63
Perferencement tagv22.pkmin.js X X 7 155 155
CoinBase application-9a3a[...].js X X 7 592 197
MaxMind device.js X X 7 261 27
Inside graphs ig.js X X 7 1,050 48

Figure 2: Techniques used by various fingerprinters in the wild.

potentially be encrypted and then sent to the fin-
gerprinter via a range of techniques: through a
JavaScript XHR request, using an image beacon, or
through HTTP cookie headers.

3 Overview

At the heart of PriVaricator is a strategy for misrep-
resenting the way parts of the browser environment
are presented to the JavaScript language runtime.
Previous studies of fingerprinters in the wild [1]
have identified certain parts of the browser environ-
ment reflected into JavaScript as key to producing
a reliable fingerprint. These properties range from
commonplace ones such as navigator.userAgent
to ones that are significantly more obscure such as
getBoundingClientRect which may be used instead
of the offsetHeight and offsetWidth attributes of
DOM elements, to test for the presence of particular
fonts on a user’s machine.

Of course, our wish is to misrepresent environment
properties of features that would be most damag-
ing to fingerprinters without breaking existing code.
As such, lying about navigator.userAgent is gen-
erally not a good idea: this may very well cause
the server to send HTML designed for a different
browser. However, subtly changing the results of
offset measurements turns out to be a better option.

Figure 2 lists some of the representative finger-
printers found in the wild, showing which finger-
printing features they use. Note that canvas-based
fingerprinting described in [14] does not appear to
be widely used in practice so far. Based on this
information, combined with statistics about which
features provide the highest number of bits of iden-
tifying information, in this paper, we primarily fo-
cus on randomizing 1) plugins and 2) fonts. Both
of these provide 21.7 bits of identifying information,
according to Panopticlick [8].

3.1 Explicit Fingerprinting

Note that in PriVaricator we do not claim to solve
the entire problem of web-based device fingerprint-

ing; indeed, the focus of PriVaricator is on explicit
attempts to fingerprint users via capturing the de-
tails of the browser environment. We are not at-
tempting to provide protection against sophisticated
side channels such as browser performance [13] which
may be used as part of fingerprinting. Our focus
is on explicit fingerprinting, i.e. JavaScript-based
fingerprinting which operates by computing a func-
tion of environment variables exposed within the
browser.

Expressions
exp ::= numExp | stringExpr | boolExp

| exp.exp(exp[,...]) | exp(exp[,...])
| boolCond?exp:exp | exp binaryOp exp
| exp.exp | exp[exp]

Booleans
boolCond ::= boolExp | ¬boolExp

| exp∨exp
| exp∧exp

boolExp ::= true | false
| exp boolOp exp

Numerics
numExp ::= numericFunc(exp) | 1 | 2 | . . .

| numExp binaryOp numExp
| −numExp
| parseInt(stringExpr)
| indexOf(stringExpr,stringExpr)
| abs(numExp)
| min(numExp,numExp)
| numEnvProp

String expressions
stringExpr ::= stringFunc(exp) | "" | . . .

| encodeURI(stringExpr)
| decodeURI(stringExpr)
| substr(stringExpr)
| concat(stringExpr,stringExpr)
| replace(stringExpr,stringExpr)
| replace(/stringExpr/,stringExpr)
| toString(numExp)
| toString(numExp,numExp)
| stringEnvProp

Operators
binaryOp ::= + | − | ∗ | / | % | << | >>
boolOp ::= = | 6= | < | <= | > | >=

Fingerprinting properties
envProp ::= stringEnvProp | numEnvProp |
stringEnvProp ::= navigator.userAgent

| navigator.appName | ...
| exp.navigator.plugins

numEnvProp ::= exp.offsetWidth | exp.offsetHeight | ...

Figure 3: BNF for explicit fingerprinting programs sup-
ported by PriVaricator. The start symbol is exp. An
effective fingerprinting function will have at least one
reference to envProp symbols, usually more.
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Furthermore, we are not attempting to address
fingerprinting implemented using plugins such as
Flash, although a technique similar to PriVaricator

could be developed to hinder fingerprinting in
ActionScript programs built into Flash.

Figure 3 shows a BNF for fingerprinting programs
over environment properties captured as envProp.
Our examination of popular fingerprinters suggests
that they compute a fingerprint, as captured by the
BNF, and then proceed to communicate it to the
server, using any of the techniques that we discussed
in the previous section.

3.2 Randomization Policies

Our strategy in PriVaricator is to intercept each of
the accesses to DOM properties of interest and aug-
ment the values returned to the JavaScript environ-
ment using a set of randomization policies. A wide
range of randomization policies may apply in prin-
ciple; for example, for integer values of properties
such as offsetWidth, a slight change to the returned
value is enough. For a property that is more struc-
tural and complex, such as the toDataURL function
used in canvas-based fingerprinting that returns the
current state of the canvas as an image [14], a differ-
ent randomization policy may be used; an example
policy for images may add slight visual noise to the
returned image.

Policies for offset measurements: For
the values of offsetHeight, offsetWidth,
and getBoundingClientRect in PriVaricator,
we propose the following randomization poli-
cies: a) Zero; b) Random(0..100); and c) ± 5% Noise.
When these policies are active, instead of returning
the original offset value, they return zero, a random
number between 0 and 100, and the original num-
ber ±5% noise, respectively. What these policies
have in common is that they perform arithmetic
operations on numbers with deterministic and
non-deterministic results. While one can probably
envision many more randomization policies, we
focused on those that generate plausible offset
values (e.g. no generation of negative numbers)
as well as those that will create enough noise to
confuse fingerprinting efforts. For instance, for the
third policy, if the percentage of noise added to an
offset is too little, then, for small offset values, it
may be rounded off to the same original integer
value and become ineffective.

These policies are controlled by a lying threshold
(denoted as θ) and a lying probability (denoted as
P(lie)). θ controls how fast PriVaricator starts ly-

ing, i.e., after how many accesses to offsetWidth or
offsetHeight values, will the policy kick in. P(lie)
specifies the probability of lying, after the θ thresh-
old has been surpassed.

Policies for plugins: For the randomization
of plugins, we define a probability P(plug hide)
as the probability of hiding each individual en-
try in the plugin list of a browser, whenever the
navigator.plugins list is populated.

Example: As an example, a configuration of

Rand Policy = Zero,
θ = 50,

P(lie) = 20%,
P(plug hide) = 30%

instructs PriVaricator to start lying after 50 offset ac-
cesses, to only lie in 20% of the cases, to respond
with the value 0 when lying, and to hide approxi-
mately 30% of the browser’s plugins. In Section 5 we
investigate which combinations of values provide the
best tradeoff between the production of unlinkable
fingerprints and the breakage of benign websites.

3.3 Breakage Concerns

Building an effective fingerprinting prevention tool
involves balancing the effectiveness of preventing fin-
gerprinters and breaking real sites. To better under-
stand the latter, we decided to crawl the top 10,000
Alexa sites to determine which ones use properties
that are of interest to fingerprinters.

Access to property offsetHeight tends to be
pretty telling. Overall, 82.3% of scripts have 0 ac-
cesses to offsetHeight. However, 1.87% of scripts
have more than 50 accesses when visited at runtime.
Figure 4 summarizes the result of our crawl, sorted
by the number of runtime accesses to offsetHeight.
Fortunately, the majority of sites seem to be ranked
not very high. However, some of the sites listed, such
as spiegel.de, are clearly important and we should
take care not to break them in PriVaricator.

4 Implementation

In Section 3 we discussed the possible randomiza-
tion policies that can be applied on the browser in-
terfaces that are commonly abused for fingerprint-
ing purposes. Since web-based device fingerprinting
happens on the client side, the aforementioned poli-
cies could, in theory, be applied via an HTTP proxy,
a browser extension, or built into the browser itself.
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6,444 bunte.de 0 1 0 1 0 0 2 8 0 0 0 0 1 2 205,115 202,909
8,039 nzz.ch 3 34 1 34 4 4 4 176 5 0 0 5 4 248 187881 187,349

191 spiegel.de 2 4 0 4 0 0 0 15 3 0 0 1 4 7 154,265 149,293
4,037 wistia.com 1 2 0 2 0 0 3 81 0 0 0 0 0 0 109,347 109,299
1,369 zeit.de 0 4 1 4 0 0 2 8 3 2 0 0 5 1,318 70,025 72,268
8,894 menards.com 0 0 0 0 0 0 0 3,783 0 0 0 0 0 37 43,847 38,715
4,754 groupon.fr 0 0 0 0 0 0 0 1 0 0 0 0 0 15 150,717 36,627
7,488 xinmin.cn 0 0 0 1 0 0 0 70,380 0 0 0 3 0 4,426 34,229 31,996
2,320 celebuzz.com 2 55 0 55 4 2 0 23 0 0 0 0 4 326 27,831 27,779
1,370 wetter.com 4 30 0 30 6 1 8 18 5 0 0 1 7 212 22,578 21,764

Figure 4: How widely are various fingerprintable browser properties used in the wild.

We ultimately chose to instrument the browser itself,
although we examined other approaches at first.

Strawman approach: JavaScript-level inter-
ception: During preliminary experimentation, we
attempted to detect accesses to fingerprintable
properties by using getters, as defined in EC-
MAScript5, on the objects and attributes of choice,
e.g., navigator.plugins. At first glance, given the
amount of obfuscation routinely found in JavaScript
code, this seems a better strategy than attempting to
instrument JavaScript code at the source level (e.g.
via an HTTP proxy). The JavaScript code that de-
fined these getters was injected in a page using a
browser extension.

During that time, however, we encountered many
browser-specific issues that eventually steered us to-
wards modifying the browser itself. For instance,
in order to be able to lie about the offsetWidth

and offsetHeight of any given element, we need
to intercept the requests of these attributes on all
elements on a page, since we cannot a priori know
which element(s) are going to be used for font de-
tection. Unlike the navigator and screen objects
which are created by the browser and thus always
available, HTML elements are created initially when
parsing a page’s HTML code, as well as on-demand,
whenever a programmer wishes to do so through
JavaScript. As such, we need to intercept the cre-
ation of all HTML elements and define getters upon
their creation.

The natural way to do this, is to “poison”
the correct object prototype, so that all future
JavaScript objects that inherit from that proto-
type will also inherit the getters. We discovered
that although our prototype poisoning was work-

ing in Mozilla Firefox, it failed to work as ex-
pected in Google Chrome. By investigating the is-
sue, we discovered that in Chrome, the offsetWidth
and offsetHeight properties are not part of the
HTMLElement prototype, but rather they are de-
fined and initialized upon the creation of new ele-
ments. Interestingly, this is not the case for the the
getBoundingClientRect method which also returns
an element’s offsetWidth and offsetHeight, and
yet is defined in the expected prototype.

In addition to this browser-specific behavior, the
use of getters also suffers from transparency is-
sues. That is, a (malicious) script can check
for the existence of getters using, among others,
the Object.getOwnPropertyDescriptor method.
Achieving transparency at the language level is fun-
damentally difficult [10].

Our implementation: For the reasons of better
compatibility and transparency, we ultimately chose
to implement our randomization policies within the
browser, by changing the appropriate C++ code in
the classes responsible for creating the navigator

object, and the ones measuring the dimensions of
elements. These changes are, by nature, very local;
our full prototype involves modifications to a total
of seven files in the WebKit implementation of the
Chromium browser, version 34.0.1768.0 (242762).
Figure 5 gives a taste for one of the representative
changes we made. We believe these changes can be
easily ported to other browsers.

The antifpFakeMeasurement function shown in
Figure 5 is responsible for returning the appropri-
ately modified offset value (based on the active ran-
domization policy) as well as “resist” lying depend-
ing on the LYING PROBABILITY value. The values of
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all capitalized variables are randomization policy pa-
rameters; once a suitable policy is chosen, these pa-
rameters can be conveyed to the browser via config-
uration files, the registry, or environment variables.

The second function shown in Figure 5
is Chromium’s function for calculating the
offsetWidth of a DOM element. As can be
seen from the code, we have augmented the

static int antifpFakeMeasurement(int o_measurement
) {
// PriVaricator policies
enum Policies {

zero = 0, random_0_100 , percent_noise ,
no_change

};

// Should we lie?
if (rand() % 100 >= LYING_PROBABILITY){

return o_measurement;
}
[...]
switch (RANDOMIZATION_POLICY){

case zero: return 0;
case random_0_100: return rand() % 100;
case percent_noise: {

int sign;
if (rand() % 100; < 50)

sign = -1;
else

sign = 1;

return o_measurement + (sign * (
NOISE_FRACTION * o_measurement));

}
case no_change: return o_measurement;
default: return o_measurement;

}
}
// augmenting Chrome/WebKit code
int Element :: offsetWidth () {

[...]
bool should_lie = false;
int o_measurement;

// Increase offset access counter and get
current value (per domain)

int offset_cnt = document ().frame()->script ().
incAndGetOffsetAccessCounter ();

if (offset_cnt > LYING_THRESHOLD)
should_lie = true;

if (RenderBox* renderer = renderBox ()) {
if (renderer ->

canDetermineWidthWithoutLayout ()){
o_measurement =

adjustLayoutUnitForAbsoluteZoom(
renderer ->fixedOffsetWidth (), *
renderer).round();

if (should_lie == false) {
return o_measurement;

} else {
return antifpFakeMeasurement(

o_measurement);
}

}
[...]

}

Figure 5: Randomization of offsetWidth.

Browser JSBench SunSpider Kraken

Chromium 69.70 ±0.19 142.66 ±0.57 1,161.44 ±10.68
PriVaricator 69.57 ±0.30 143.18 ±0.76 1,147.78 ±08.00

Figure 6: Performance comparison of “vanilla”
Chromium and Chromium equipped with PriVaricator.
All measurements are in ms.

function with a counter that records the total
number of offset accesses performed by scripts
of a specific domain. If that counter exceeds
our LYING THRESHOLD, then instead of returning
the calculated value, we return the result of our
policy by applying antifpFakeMeasurement on the
original offset value.

5 Evaluation

The goal of PriVaricator’s evaluation is three-fold. In
addition to ensuring that the overhead of PriVaricator

is minimal (Section 5.1), we want to maximize the ef-
fectiveness of fingerprinting prevention (Section 5.2),
while minimizing the overall damage to the way
users perceive the web (Section 5.3). When it comes
to privacy-enhancing technologies, this tradeoff is
not entirely new. For example, Mozilla Firefox de-
cided to misreport (to JavaScript programs) the
computed styles for links in order to prevent his-
tory leaks [2], after they had been demonstrated on
a large scale.

5.1 Performance Overhead

In order to assess the performance overhead of
PriVaricator, we used three independently-developed
JavaScript benchmark suites: SunSpider ver-
sion 1.0.2, Kraken version 1.1, and JSBench ver-
sion 2013.1. Even though these benchmark suites al-
ready take repeated measurements, we also executed
each suite five times, clearing the browser’s cache in
between runs. The experiments were run on a desk-
top machine, running a recent Ubuntu Linux distri-
bution, with an Intel Core i5-3570 CPU @ 3.40 GHz
processor, and 8 GB of RAM.

Figure 6 shows the average benchmark execution
times (in ms) and standard deviations for an un-
modified version of the Chromium browser, and for
the same Chromium browser with our modifications
present and enabled. Two out of the three bench-
marks reported that our runs with PriVaricator exe-
cuted, on average, slightly faster than the ones of
the unmodified browser. Given the standard de-
viation of our measurements, our instrumentation
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is not, in reality, speeding up the browser; instead,
these measurements show that the added overhead
of PriVaricator is so negligible that it does not exceed
the inherent noise in the reported execution time of
browser benchmarks.

5.2 Preventing Fingerprinting

While one can fully analyze the client-side
JavaScript code of fingerprinters, the way in which
a user’s fingerprintable attributes are combined and
mapped to a fingerprint (also known as a device iden-
tifier) is not necessarily a client-side operation. In
order to assess how our randomization policies affect
a fingerprinter’s ability of identifying us, we chose
four services that can be used as black-box oracles.
Some of these revealed the device identifier as part
of the opt-out process, while with others more in-
vestigation was required. Unfortunately, finding fin-
gerprinters that are willing to disclose information
about their internal workings is a major challenge
and it took us some time to understand how to test
these four fingerprinters. For this evaluation, we
measured how PriVaricator stands against BlueCava,
Coinbase, PetPortal, and fingerprintjs, as explained
below.

BlueCava: Similarly to other third-party track-
ers, BlueCava provides an opt-out page (http://
bluecava.com/opt-out) for users who wish to opt-
out of tracking by BlueCava. On this page, users are
fingerprinted and their fingerprintable attributes are
sent to BlueCava’s server. The server then responds
with a device identifier, e.g. 18B1-EBFC-A3F0-

6D81-6DE8-D8DA-CA56-A22B, and whether this de-
vice identifier has already opted-out in the past. The
details of how a user’s fingerprintable attributes are
combined into a device identifier are proprietary and
are unknown to us.

PetPortal: Boda et al. have created a cross-
browser fingerprinting suite as part of their research
in browser fingerprinting [5], available at http://

fingerprint.pet-portal.eu/. As in the case of
BlueCava, the user’s fingerprintable attributes are
delivered to the server, which then sends back a de-
vice identifier and whether the device identifier be-
longs to a new, or returning, user.

Coinbase: Even though Coinbase does not provide
an opt-out page, the algorithm for deriving a de-
vice identifier from a user’s fingerprintable attributes
is part of their client-side JavaScript code. More
specifically, when a site includes remote JavaScript
code for obtaining Coinbase’s “Pay with Bitcoin”

button, the remote code creates an iframe, in which
the fingerprinting code runs [6]. Once the fingerprint
is computed, it is MD5-ed and then set as a cookie
on the user’s machine. When the user clicks on the
payment button, her fingerprint will be automati-
cally submitted to the Coinbase server via the user’s
cookies.

fingerprintjs: Finally, fingerprintjs is an open-
source fingerprinting library which, like Coinbase,
runs fully on the client-side. fingerprintjs is inspired
by Panopticlick [8] and contains most of its features.
Interestingly, fingerprintjs is also the only library,
that we encountered, that fingerprints a user’s ma-
chine using the HTML5 canvas as proposed by Mow-
ery et al. [14]. It should be noted that it is not yet
entirely clear how effective canvas-based fingerprint-
ing is, in practice. Lastly, note that fingerprintjs
does not support JavaScript-based font detection.

5.2.1 Experimental Setup

In all four cases, the individual fingerprinting
providers gave us a way of assessing the efficacy of
PriVaricator, simply by visiting each provider multi-
ple times using different randomization settings, and
recording the fingerprint provided by each oracle. To
explore the space of possible policies in detail, we
performed an automated experiment where we vis-
ited each fingerprinting provider 1,331 times, to ac-
count for 113 parameter combinations, where each
parameter of our randomized policy (lying thresh-
old, lying probability, and plugin-hiding probability)
ranged from 0 to 100 in increments of 10.

Before we present the results of this experiment
we would like to elaborate on two of our decisions.

Panopticlick: We chose against the use of Panop-
ticlick since the feedback that Panopticlick provides
to the user is of a semi-qualitative nature, e.g. “You
are unique among 3 million users”. This type of
statement does not allow us to compare the finger-
prints received from multiple visits, and thus does
not allow us to reason about the effect that our pa-
rameterized randomization policies have against it.
In addition, since all the sets of attributes collected
by the studied fingerprinters are supersets of Panop-
ticlick, we have no reason to expect that our results
would have been dramatically different, had we been
able to include Panopticlick in our study.

Focusing on the Random(0..100) policy: Even
though we propose multiple lying policies about
our offsets (Zero value, Random(0..100), and
± 5% Noise) we only run this set of experiments us-
ing the Random(0..100) policy. We argue that, given
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Figure 7: Distribution of device identifiers across three different fingerprinters.

the workings of JavaScript-based font detection, any
of our proposed lying policies would give equivalent
results. This is because, as explained in Section 2.2,
fingerprinting providers first establish ground truth
using a font-family that they expect to be present
on all devices (e.g. sans), and then compare the
offsetWidth and offsetHeight of text using other
font-families against that ground truth.

In all of our policies, PriVaricator will cause devia-
tions from that ground truth and may even poison
the fingerprinters’ ground truth itself, if the ground
truth is acquired after the lying threshold (θ) of our
policies is surpassed. As such, all of our lying policies
will cause the fingerprinter to believe that our ma-
chine has fonts that it actually does not have (false
positives). False negatives are a rare phenomenon
since our lying policy would have to inadvertently
set the values of offsetWidth and offsetHeight to
perfectly match the ground truth.

5.2.2 Results

The results of this set of experiments are shown in
Figure 7. In all three scatter-plots, the x-axis repre-
sents the probability of lying, the y-axis represents
the lying threshold, while the z-axis represents the
probability of hiding each individual plugin in our
browser’s list of plugins. For the first two graphs,
colors and symbols represent clusters of fingerprints,
e.g., all green plus signs denote the same fingerprint,
within a given service.

BlueCava and Coinbase: For BlueCava, in Fig-
ure 7a one can see that their fingerprinting algorithm
can only track us mostly along the left-most edges
of the graph. For example, when our plugin-hiding
probability is 0, i.e., we always show all plugins, and

the lying threshold ranges from 0 to 30, we get the
same fingerprint (red asterisks at the“bottom”of the
graph). What is also interesting is how fingerprints
change when the lying threshold is less than 30, or
greater than 30.

Based on our understanding of BlueCava’s algo-
rithm, this is because when our threshold is lower
than 30, we then poison the ground truth of the
JavaScript-based font detection algorithm, which
leads to having an increased number of fonts marked
as “present.” This theory is further strengthened
by the observation that the size of the clusters un-
der that threshold is larger than the size of clusters
above it, since the lying probability has less of an
effect when the ground truth is wrong.

At the same time, it is also evident that most
of the cube is empty, that is, in all points other
than the ones present, every fingerprint was unique,
yielding 94.58% of all fingerprints being unique.
This shows how fragile BlueCava’s identification is
against our randomization policies. Coinbase’s re-
sults were very similar to Bluecava’s, thus we chose
to briefly discuss them in the paper’s Appendix.

fingerprintjs: For fingerprintjs, Figure 7b, the ar-
rangement of points is visibly different from Blue-
Cava’s. Since this library does not have support for
JavaScript-based font detection, our choices of lying
probability and lying threshold have no effect. What
has the most influence is the value of the plugin-
hiding probability. As a matter of fact, it is evi-
dent that fingerprintjs can only track us either when
we have no plugins showing, i.e., hiding probabil-
ity equals 100%, or all plugins showing, i.e., hiding
probability is 0%.

In nearly all intermediate points (78.15% of the to-
tal set of collected fingerprints), randomness works
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Figure 8: The first three screenshots show tumblr.com and its ever-changing backgrounds. The last image is an
automatically-generated mask for assessing the true breakage caused by PriVaricator. Black areas denote masked-out
content.

in our favor by returning different sets of plugins,
which, in turn, result in different fingerprints. These
results show how important it is to combine random-
ization approaches in order to deter fingerprinters
who do not utilize all fingerprintable attributes of a
user’s browsing environment.

PetPortal: Lastly, Figure 7c, shows the results of
our experiment against PetPortal. Note that for this
figure, because of the large number of clusters, to
make the results more readable, we show all the
configurations that resulted in unique fingerprints,
instead of showing clusters of same fingerprints. It
is evident that PetPortal succeeds more in tracking
us than BlueCava, Coinbase, and fingerprintjs.

In contrast with the other three services, we were
able to get unique fingerprints in “only” 43.61% of
the 1,331 parameter combinations. One can notice
from this graph that we defeat tracking when the ly-
ing probability is in the range of 10% to 60%. When
the lying probability exceeds 60% we begin lying
too often, which likely results in having most fonts
marked as “present.” There, we also see a lack of ef-
fect from the plugin-hiding probability which cannot
recover us from being accurately fingerprinted. This
likely means that PetPortal places more weight on
the discovered fonts, and less on the claimed plugins.

Summary: Overall, our experiments showed that,
while the specific choices of each fingerprinter af-
fect the uniqueness of our fingerprints, PriVaricator

was able to deceive all of them for a large fraction of
the tested combination settings. Moreover, the pres-
ence of clusters of identical fingerprints demonstrates
that most fingerprinting providers derive a finger-
print by following a more complicated approach than
just hashing all fingerprintable attributes together.
Finally, comparatively speaking, PetPortal was the
most resistant to PriVaricator.

5.3 Assessing the Breakage

In the previous section, we demonstrated that
PriVaricator was able to withstand fingerprinting by
measuring the number of unique fingerprints re-
ceived, for a total of 1,331 settings combinations.
By computing the intersection of the points result-
ing in unique fingerprints across all four fingerprint-
ing providers, (essentially identical to PetPortal’s re-
sults), we obtain a range of settings, all of which pro-
vide prevention from reliable fingerprinting. In this
section, we assess the level of breakage of benign sites
for each of those parameter combinations.

Experimental setup: The offsetWidth and
offsetHeight properties of an element provide in-
formation to a JavaScript program about the size
of that element, as is currently rendered on a user’s
screen. When PriVaricator lies about these values, it
creates a potential for visual breakage. For exam-
ple, by reporting that an element is smaller than it
actually is, PriVaricator could cause the page to place
it in a smaller container, hiding part of its content
from the user. Numerically, we define breakage as
the fraction of pixels that are different when a site
is loaded with a vanilla browser (PriVaricator turned
off) and with PriVaricator.

To assess the breakage, we instrumented
Chromium to visit the main pages of the top 1,000
Alexa sites, for 48 different combinations of lying
probability and lying threshold; these were the
parameter combinations that resulted in unique
fingerprints, as described in the previous section.
To contain the dimensionality of this experiment,
we statically assigned the plugin-hide probability to
zero (showing all plugins) since we reasoned that
the main pages of the most popular sites of the web
likely behave the same for users with different plu-
gins. At every site visit, the browser waited for 25
seconds and then captured a screenshot (1,050x850
pixels) of the rendered content.
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Figure 9: Breakage caused by PriVaricator, given a series of possible configurations and a randomization policy

In order to separate between visual differences
caused by PriVaricator, and visual differences caused
by the inherent variation of a site, e.g. ads, image
carousels, and newly posted content, we collected a
new vanilla-browser screenshot every ten visits of a
page, resulting in a total of five extra screenshots.

Since any visual variation detected on these five
screenshots can be attributed to a website’s dynamic
content, we computed a visual mask of differences
appearing on them, and used it when comparing a
screenshot captured using a specific policy parame-
ter combination, to the vanilla one. This mask can
be applied to all PriVaricator screenshots to exclude
the naturally varying parts of a page from subse-
quent breakage comparisons. For illustration, Fig-
ure 8 shows three different vanilla-browser screen-
shots of tumblr.com and the computed mask.

Finally, while in the previous section the choice
of randomization policy was not important, in this
section, different policies are likely to produce dif-
ferent visual results, e.g., receiving a value that
is 5% off the expected one, versus receiving a value
that is completely random. Thus, the entire experi-
ment had to be repeated three times, once for every
randomization policy: (a) Random(0..100); b) Zero;
and c) ± 5% Noise). Overall, we collected a total of
approximately 159,000 images, occupying 54 GB of
disk space, which we compared in order to quantify
the breakage caused by PriVaricator.

Results: The results of our breakage experiments
are first detailed in Figure 9 and then summarized
in Figure 10. Figure 10a presents the minimum,
average, and maximum breakage for all three poli-
cies when considering the fractions of different pixels
across all sites. Since we noticed that, in some cases,
the computed masks were too large, we also calcu-
lated the breakage of sites when ignoring sites that

Policy Min Mean Max %

Random(0..100) 0.8% 1.4% 2.1%
Zero 0.4% 0.8% 1.3%
± 5% Noise 0.4% 0.6% 0.9%

(a) Summary of breakage results.

Policy Min Mean Max %

Random(0..100) 0.8% 1.5% 2.3%
Zero 0.4% 0.9% 1.4%
± 5% Noise 0.4% 0.7% 1.0%

(b) Breakage when ignoring pages with masked content
greater than 30% (approx. 84% of pages remaining).

Figure 10: Breakage summary with and without in-
cluding the sites with large masks.

had masks with size larger than 30% of the total im-
age; this is shown in Figure 10b. This way, we ignore
sites that would give PriVaricator an unfair advantage
by hiding real breakage under a site’s natural vari-
ation. While the latter set of numbers is slightly
larger than the former, it is evident, not only that
the ± 5% Noise incurs the least breakage but that
the breakage itself is, on average, less than 1%.

Every point in Figure 9 is the average breakage
of all 1,000 Alexa sites visited with PriVaricator using
a specific 〈P(lie),θ〉 configuration, and one of our
three lying policies. For instance, in Figure 9b, the
average breakage of sites when visited by PriVaricator

configured with a lying probability equal to 10%
and a lying threshold of 30 accesses is 0.004, un-
der the Zero policy. In other words, the sites vis-
ited by PriVaricator with that specific combination of
settings had, on average, 0.4% different pixels when
compared to the vanilla screenshots.

For the breakage caused by the Random(0..100)
policy (Figure 9a) and Zero policy (Figure 9b), one
can discern a positive relationship between the ly-
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ing probability and the resulting breakage. This
relationship makes intuitive sense. The more of-
ten PriVaricator lies using these policies, the more
often a website receives an unexpected value of 0,
or a random number between 0 and 100. On the
other hand, this relationship is significantly weaker
in ± 5% Noise policy results (Figure 9c). We ar-
gue that this is because the modified offset value is
relatively close to the value that a script would oth-
erwise expect, thus minimizing the number of sites
breaking because of such small modifications.

Inspecting breakage: Finally, in order to under-
stand how a user would experience potential break-
age, we manually reviewed the 100 screenshots (un-
der the ± 5% Noise policy) with the largest reported
breakage. In this analysis, we discovered that in
only 8 cases, the differences could be attributed to
PriVaricator. The rest of the screenshots (92/100)
were very different from the vanilla screenshots due
to a site’s inherent variations and errors, not cap-
tured in any of the five vanilla screenshots. In many
cases, the sites would show an “in-page” pop-up ask-
ing the user to participate in a survey. Usually, this
pop-up would add a semi-transparent gray overlay
over the page, causing our automatic comparison al-
gorithms to report a very large visual difference.

Next to surveys, the reported breakage was due
to missing or not-fully loaded ads, error-pages and
image carousels. In one case, PriVaricator had caused
a slight stretch of a site’s background image. While
this led to a large computed breakage, users would
not notice the change if they could not compare the
page with the original non-stretched version.

Finally, we manually inspected the sites making
the most use of offset accesses (listed in Figure 4) by
visiting them with PriVaricator and clicking on a few
links on each site. All sites were operational and
usable, with the only difference being the location
and movement of some objects, e.g. moving ads,
whose motion and placement was slightly affected
by the randomization policies of PriVaricator.

Summary: Overall, the results of our break-
age experiments show that the negative effect that
PriVaricator has on a user’s browsing experience is
negligible. Moreover, our manual analysis revealed
that we have likely overestimated the breakage since
most of the pages with the highest reported breakage
turned out to be false positives.

Our low breakage results also allow us to avoid
the temptation of cherry-picking configurations from
Figure 9c, which would likely lead to issues related
to over-fitting. Instead, any of the many parame-

ter configurations could be picked for deployment,
e.g., picking one at random when a user starts a pri-
vate mode session. We opine that an average break-
age of 0.7% (likely an upper bound with the actual
damage as much as 10x less) provides an acceptable
trade-off for the extra privacy that the user gains in
return.

6 Discussion

Transparency: As with any defense strategy there
is a question of transparency. Since PriVaricator is us-
ing randomness to report different values for popular
fingerprintable attributes, a motivated fingerprinter
could test for the presence of unexpected random-
ness, e.g., by enquiring about the dimensions of an
element 100 times, and then check for the presence
of differences in the reported dimensions of the, oth-
erwise unmodified, element. One possible solution
that alleviates this transparency issue is setting up a
“lie cache”, where the browser would report the same
false value for multiple inquires about the dimen-
sions of the same unmodified element, or for many
identical elements. Attempts to discern “hidden”
real values that are misreprestened by PriVaricator

(e.g. through a statistical analysis of the returned
values) would also be alleviated by such a lie cache.
We leave the exploration of this solution and other
similar ones, for future work.

Deployment challenges: The key advantages of
PriVaricator are its negligible overhead and the rela-
tive ease of porting. It is easy to underestimate the
importance of low overhead, but given the current
emphasis on browser performance, it is unlikely that
a privacy solution that suffers a large performance
hit will be deployed. Our design of PriVaricator has
emphasized minimal modifications to existing tech-
nology, which leads to small overhead and negligible
porting costs; overall, the automatically generated
patch of our modifications to Chromium (including
comments) is only 947 lines long.

7 Related Work

In this section, we provide an overview of literature
focusing on browser fingerprinting.

History of fingerprinting: The work of
Mayer [12] and Eckersley [8] presents large-scale
studies that show the possibility of effective state-
less web tracking via only the attributes of a user’s
browsing environment. These studies prompted
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some follow-up efforts [9, 21] to build better finger-
printing libraries. Yen et al. [23] performed a fin-
gerprinting study by analyzing month-long logs of
Bing and Hotmail and showed that the combination
of the User-agent HTTP header with a client’s IP
address were enough to track approximately 80% of
the hosts in their dataset.

While the majority of fingerprinting efforts have
focused on fonts and plugins, Mowery and Shacham
proposed fingerprinting through the rendering of
text and WebGL scenes to a <canvas> element [14].
Different browsers will display text and graphics in
a different way which, however small, can be used to
differentiate and track users. The downsides to this
method are that these technologies are only available
in the latest versions of modern browsers and that
the canvas-generated entropy is not sufficient for it
to be used as the only fingerprinted attribute.

Extensions: Several user-agent-spoofing browser
extensions (UserAgent Switcher, UserAgent RG,
UAControl, Ultimate User Agent Switcher, etc.)
have emerged as well, primarily for Chrome and
Firefox browsers. As analyzed by Nikiforakis et
al. [16], these extensions may actually be counter-
productive, since they considerably narrow down the
population of possible users to fingerprint, in addi-
tion to frequently reporting impossible combinations
of environment variables. PriVaricator goes deeper
than these extensions, focusing on portions of the
environment that can be spoofed to break finger-
printers, while not significantly affecting other sites.

Firegloves, proposed by Boda et al. [4, 5] but no
longer supported, was a browser extension that at-
tempted to frustrate fingerprinting attempts by fak-
ing the screen resolution and timezone, presenting
an empty navigator.plugins list, limiting the num-
ber of font families allowed to load per tab, and
randomizing the return value of offsetWidth and
offsetHeight of elements. As we showed in Sec-
tion 5.2, presenting an empty list of plugins is as
bad as presenting a full list of plugins, since the ma-
jority of browsers support at least one plugin. In
contrast, PriVaricator chooses to randomize the exist-
ing list of plugins which results in a large number of
different plugin combinations. The randomized off-
set value of Firegloves is a random value between 0
and 1,000. As shown in our evaluation of site break-
age, Section 5.3, this randomization approach pro-
duces the most breakage. Moreover, our random-
ized values were constrained to a range of 0 to 100,
meaning that if one assumes a positive correlation
between the size of the set of possible offset values
and breakage, Firegloves has the potential to cause

considerably more breakage. Lastly, since Firegloves
performs its operations through getters and setters,
it suffers from the transparency and compatibility
problems we mentioned in Section 4.

Side channels: Researchers have proposed a vari-
ety of side channels for browser fingerprinting, al-
though we are not aware of them being used in
practice. Mowery et al. [13] proposed the use of
benchmark execution time as a way of fingerprinting
JavaScript implementations, under the assumption
that specific versions of JavaScript engines will per-
form in a consistent way. Closely related is the work
of Mulazzani et al. who used the errors produced
by JavaScript engines when executing standard test
suites to differentiate between browsers [15].

Olejnik et al. [17] show that web history can also
be used as a way of fingerprinting for tracking pur-
poses. The authors make this observation by ana-
lyzing a corpus of data from when the CSS-visited
history bug was still present in browsers. Today,
however, all browsers have corrected this issue and
thus, extraction of a user’s history is not as straight-
forward, especially without user interaction [22]. In
more recent work, Dey et al. propose the use of de-
tectable hardware imperfections of smartphone sen-
sors, as a way of tracking their users [7].

We are not aware of wide-scale fingerprinting on
the web using any of these side channels. This is part
of the reason we chose to focus on explicit fingerprint
in PriVaricator.

8 Conclusion

This paper proposes PriVaricator, an addition to pri-
vacy modes present in modern browsers. The goal
of PriVaricator is to combat stateless tracking, which
is being done primarily using device-fingerprinting
JavaScript code. We use careful randomization as
a way to make subsequent visits to the same fin-
gerprinter difficult to link together. We evaluate
several families of randomization functions to find
those that result in the best balance between fin-
gerprinting prevention and breaking existing sites.
While our implementation has focused on random-
izing font- and plugin-related properties, we demon-
strate how our approach can be made general with
pluggable randomization policies.

Our best randomization policies reliably prevent
all fingerprinting when tested with several well-
known device fingerprinting providers, while incur-
ring minimal damage on the content of the Alexa
top 1,000 sites. Furthermore, we found the runtime
overhead of PriVaricator to be negligible.
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A Coinbase

Figure 11 shows the distribution of non-unique
device identifiers when testing PriVaricator against
Coinbase. Colors and symbols represent clusters of
identical values, e.g., all green plus-signs denote the
same device identifier as generated and reported by
Coinbase. As was the case with Bluecava (discussed
in Section 5.2), PriVaricator deceives Coinbase in the
vast majority of cases (97.86% of the extracted de-
vice identifiers were unique).
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Figure 11: Distribution of non-unique device identifiers
of PriVaricator against the Coinbase service.

MSR-TR-2014-26 14 February 28, 2014


